If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+14x=20
We move all terms to the left:
2x^2+14x-(20)=0
a = 2; b = 14; c = -20;
Δ = b2-4ac
Δ = 142-4·2·(-20)
Δ = 356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{356}=\sqrt{4*89}=\sqrt{4}*\sqrt{89}=2\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{89}}{2*2}=\frac{-14-2\sqrt{89}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{89}}{2*2}=\frac{-14+2\sqrt{89}}{4} $
| 2x+8=-x+23 | | 8c+3=13 | | (n/14)-2.9=-5.11 | | 3(x-5)-2x=-18 | | 36n2=1 | | 19+13x=21 | | 49+n=90 | | 21-13m-7m=9 | | 2/3(x-30)=26 | | 9x+12-x=-52 | | 2x^2+25=-x^2+10x | | 8x+1x2=81 | | -11=x/3-5 | | h^2+8h–24=0 | | k/7-2/3=10/21 | | 8x+1/2=81 | | 4x+6=5x−9 | | 7x^-44x-22=0 | | 4.8=3/y | | 8x+1x/2=81 | | -3x-6-5x=18 | | 2x(-5-7x)=35 | | x2/5=30 | | 1m+2(6+6=5 | | 10=3x=2=x | | -(-x+2)-2x=6 | | x/5−18=−11 | | -18=4+2u | | 22-2u=18 | | 3x+(x+4)+70=180 | | 2x+4(x-3)=-24 | | 8x-2=81 |